Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068879

RESUMO

Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1ß and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.


Assuntos
Síndrome da Liberação de Citocina , Cardiopatias , Inflamassomos , Hepatopatias , Pneumopatias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteínas de Transporte/metabolismo , Síndrome da Liberação de Citocina/imunologia , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pneumopatias/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cardiopatias/imunologia , Hepatopatias/imunologia
3.
Eur J Pharmacol ; 913: 174644, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801532

RESUMO

The mortality of sepsis-induced cardiac dysfunction (SICD) is very high due to the complex pathophysiological mechanism. Syringaresinol (SYR) is a natural abstract which possesses anti-inflammatory property. The present study aims was to identify the protective impact of SYR on sepsis-induced cardiac dysfunction and investigate the specific mechanisms. We found that SYR improved the cardiac function and alleviated myocardial injury in mice that subjected to cecal ligation and puncture, in addition, SIRT1 expression was significantly elevated after SYR treatment compared to sepsis group both in vivo and in vitro, along with suppression of NLRP3 activation and proinflammatory cytokines release. However, SIRT1 inhibitor EX427 abolished the impact of SYR on LPS-induced pyroptosis in cardiomyocytes. Furthermore, molecular docking analysis predicted that there is high affinity between SYR and estrogen receptor (ER), ER inhibitor ICI182780, the specific ERß inhibitor PHTP and the specific ERαinhibitor AZD9496 were used to examine the role of ER in the protective effect of SYR against SICD, and the results suggested that ER activation was essential for the cardioprotective function of SYR. In conclusion, SYR ameliorates SICD via the ER/SIRT1/NLRP3/GSDMD pathway.


Assuntos
Cardiotônicos/farmacologia , Furanos/farmacologia , Cardiopatias/tratamento farmacológico , Lignanas/farmacologia , Receptores de Estrogênio/metabolismo , Sepse/complicações , Animais , Cardiotônicos/uso terapêutico , Cinamatos/farmacologia , Modelos Animais de Doenças , Fulvestranto/farmacologia , Furanos/uso terapêutico , Coração/efeitos dos fármacos , Cardiopatias/imunologia , Cardiopatias/patologia , Humanos , Indóis/farmacologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Lignanas/uso terapêutico , Masculino , Camundongos , Simulação de Acoplamento Molecular , Miocárdio/patologia , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Receptores de Estrogênio/antagonistas & inibidores , Sepse/tratamento farmacológico , Sepse/imunologia , Sirtuína 1/metabolismo
4.
Melo, Marcelo Dantas Tavares de; Paiva, Marcelo Goulart; Santos, Maria Verônica Câmara; Rochitte, Carlos Eduardo; Moreira, Valéria de Melo; Saleh, Mohamed Hassan; Soares, Brandão, Simone Cristina; Gallafrio, Claudia Cosentino; Goldwasser, Daniel; Gripp, Eliza de Almeida; Piveta, Rafael Bonafim; Silva, Tonnison Oliveira; Santo, Thais Harada Campos Espirito; Ferreira, Waldinai Pereira; Salemi, Vera Maria Cury; Cauduro, Sanderson A; Barberato, Silvio Henrique; Lopes, Heloísa M Christovam; Pena, José Luiz Barros; Rached, Heron Rhydan Saad; Miglioranza, Marcelo Haertel; Pinheiro, Aurélio Carvalho; Vrandecic, Bárbara Athayde Linhares Martins; Cruz, Cecilia Beatriz Bittencourt Viana; Nomura, César Higa; Cerbino, Fernanda Mello Erthal; Costa, Isabela Bispo Santos da Silva; Coelho-Filho, Otavio Rizzi; Carneiro, Adriano Camargo de Castro; Burgos, Ursula Maria Moreira Costa; Fernandes, Juliano Lara; Uellendahl, Marly; Calado, Eveline Barros; Senra, Tiago; Assunção, Bruna Leal; Freire, Claudia Maria Vilas; Martins, Cristiane Nunes; Sawamura, Karen Saori Shiraishi; Brito, Márcio Miranda; Jardim, Maria Fernanda Silva; Bernardes, Renata Junqueira Moll; Diógenes, Tereza Cristina; Vieira, Lucas de Oliveira; Mesquita, Claudio Tinoco; Lopes, Rafael Willain; Neto, Elry Medeiros Vieira Segundo; Rigo, Letícia; Marin, Valeska Leite Siqueira; Santos, Marcelo José; Grossman, Gabriel Blacher; Quagliato, Priscila Cestari; Alcantara, Monica Luiza de; Teodoro, José Aldo Ribeiro; Albricker, Ana Cristina Lopes; Barros, Fanilda Souto; Amaral, Salomon Israel do; Porto, Carmen Lúcia Lascasas; Barros, Marcio Vinícius Lins; Santos, Simone Nascimento dos; Cantisano, Armando Luís; Petisco, Ana Cláudia Gomes Pereira; Barbosa, José Eduardo Martins; Veloso, Orlando Carlos Glória; Spina, Salvador; Pignatelli, Ricardo; Hajjar, Ludhmilla Abrahão; Filho, Roberto Kalil; Lopes, Marcelo Antônio Cartaxo Queiroga; Vieira, Marcelo Luiz Campos; Almeida, André Luiz Cerqueira.
Arq. bras. cardiol ; 117(4): 845-909, Oct. 2021. graf, ilus, tab
Artigo em Português | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1344557
5.
Viruses ; 13(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34696354

RESUMO

Viruses are an underappreciated cause of heart failure. Indeed, several types of viral infections carry cardiovascular risks. Understanding shared and unique mechanisms by which each virus compromises heart function is critical to inform on therapeutic interventions. This review describes how the key viruses known to lead to cardiac dysfunction operate. Both direct host-damaging mechanisms and indirect actions on the immune systems are discussed. As viral myocarditis is a key pathologic driver of heart failure in infected individuals, this review also highlights the role of cytokine storms and inflammation in virus-induced cardiomyopathy.


Assuntos
Insuficiência Cardíaca/virologia , Coração/virologia , Miocardite/virologia , Animais , Cardiomiopatias/virologia , Cardiomiopatia Dilatada/virologia , Síndrome da Liberação de Citocina , Cardiopatias/imunologia , Cardiopatias/terapia , Cardiopatias/virologia , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/terapia , Humanos , Inflamação , Miocardite/imunologia , Miocardite/terapia , Viroses/imunologia , Viroses/terapia , Viroses/virologia
6.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484128

RESUMO

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


Assuntos
COVID-19/metabolismo , Cardiomiopatias/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/imunologia , Cardiomiopatias/imunologia , Cardiomiopatias/patologia , Cardiopatias/imunologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Inflamação , Gordura Intra-Abdominal/patologia , Obesidade/complicações , Obesidade/imunologia , Obesidade/patologia , Pericárdio , Prognóstico , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo
7.
Front Immunol ; 12: 737170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512671

RESUMO

Cerebral-cardiac syndrome (CCS) refers to cardiac dysfunction following varying brain injuries. Ischemic stroke is strongly evidenced to induce CCS characterizing as arrhythmia, myocardial damage, and heart failure. CCS is attributed to be the second leading cause of death in the post-stroke stage; however, the responsible mechanisms are obscure. Studies indicated the possible mechanisms including insular cortex injury, autonomic imbalance, catecholamine surge, immune response, and systemic inflammation. Of note, the characteristics of the stroke population reveal a common comorbidity with diabetes. The close and causative correlation of diabetes and stroke directs the involvement of diabetes in CCS. Nevertheless, the role of diabetes and its corresponding molecular mechanisms in CCS have not been clarified. Here we conclude the features of CCS and the potential role of diabetes in CCS. Diabetes drives establish a "primed" inflammatory microenvironment and further induces severe systemic inflammation after stroke. The boosted inflammation is suspected to provoke cardiac pathological changes and hence exacerbate CCS. Importantly, as the key element of inflammation, NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is indicated to play an important role in diabetes, stroke, and the sequential CCS. Overall, we characterize the corresponding role of diabetes in CCS and speculate a link of NLRP3 inflammasome between them.


Assuntos
Diabetes Mellitus/imunologia , Cardiopatias/imunologia , Inflamassomos/imunologia , Mediadores da Inflamação/imunologia , AVC Isquêmico/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Animais , Comorbidade , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Cardiopatias/epidemiologia , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , AVC Isquêmico/epidemiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Síndrome
8.
J Am Heart Assoc ; 10(16): e021428, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34365798

RESUMO

Background Cardiac dysfunction is a prominent feature of multisystem inflammatory syndrome in children (MIS-C), yet the etiology is poorly understood. We determined whether dysfunction is global or regional, and whether it is associated with the cytokine milieu, microangiopathy, or severity of shock. Methods and Results We analyzed echocardiographic parameters of myocardial deformation and compared global and segmental left ventricular strain between 43 cases with MIS-C ≤18 years old and 40 controls. Primary outcomes included left ventricular global longitudinal strain, right ventricular free wall strain), and left atrial strain. We evaluated relationships between strain and profiles of 10 proinflammatory cytokines, microangiopathic features (soluble C5b9), and vasoactive-inotropic requirements. Compared with controls, cases with MIS-C had significant impairments in all parameters of systolic and diastolic function. 65% of cases with MIS-C had abnormal left ventricular function (|global longitudinal strain|<17%), although elevations of cytokines were modest. All left ventricular segments were involved, without apical or basal dominance to suggest acute stress cardiomyopathy. Worse global longitudinal strain correlated with higher ratios of interleukin-6 (ρ -0.43) and interleukin-8 (ρ -0.43) to total hypercytokinemia, but not absolute levels of interleukin-6 or interleukin-8, or total hypercytokinemia. Similarly, worse right ventricular free wall strain correlated with higher relative interleukin-8 expression (ρ -0.59). There were no significant associations between function and microangiopathy or vasoactive-inotropic requirements. Conclusions Myocardial function is globally decreased in MIS-C and not explained by acute stress cardiomyopathy. Cardiac dysfunction may be driven by the relative skew of the immune response toward interleukin-6 and interleukin-8 pathways, more so than degree of hyperinflammation, refining the current paradigm of myocardial involvement in MIS-C.


Assuntos
Função do Átrio Esquerdo , COVID-19/complicações , Síndrome da Liberação de Citocina/etiologia , Citocinas/sangue , Cardiopatias/etiologia , Mediadores da Inflamação/sangue , Síndrome de Resposta Inflamatória Sistêmica/complicações , Função Ventricular Esquerda , Função Ventricular Direita , Adolescente , Fatores Etários , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Criança , Estudos Transversais , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/imunologia , Ecocardiografia , Feminino , Cardiopatias/diagnóstico por imagem , Cardiopatias/imunologia , Cardiopatias/fisiopatologia , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/imunologia
9.
Cells ; 10(7)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359851

RESUMO

Chronic inflammation, the activation of immune cells and their cross-talk with cardiomyocytes in the pathogenesis and progression of heart diseases has long been overlooked. However, with the latest research developments, it is increasingly accepted that a vicious cycle exists where cardiomyocytes release cardiocrine signaling molecules that spiral down to immune cell activation and chronic state of low-level inflammation. For example, cardiocrine molecules released from injured or stressed cardiomyocytes can stimulate macrophages, dendritic cells, neutrophils and even T-cells, which then subsequently increase cardiac inflammation by co-stimulation and positive feedback loops. One of the key proteins involved in stress-mediated cardiomyocyte signal transduction is a small GTPase RhoA. Importantly, the regulation of RhoA activation is critical for effective immune cell response and is being considered as one of the potential therapeutic targets in many immune-cell-mediated inflammatory diseases. In this review we provide an update on the role of RhoA at the juncture of immune cell activation, inflammation and cardiac disease.


Assuntos
Cardiopatias/imunologia , Leucócitos/imunologia , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Cardiomegalia/imunologia , Cardiomegalia/patologia , Cardiopatias/patologia , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/patologia , Humanos
10.
Cardiovasc Pathol ; 54: 107370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34273507

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is commonly associated with myocardial injury and heart failure. The pathophysiology behind this phenomenon remains unclear, with many diverse and multifaceted hypotheses. To contribute to this understanding, we describe the underlying cardiac findings in fifty patients who died with coronavirus disease 2019 (COVID-19). METHODS: Included were autopsies performed on patients with a positive SARS-CoV-2 reverse-transcriptase-polymerase-chain reaction test from the index hospitalization. In the case of out-of-hospital death, patients were included if post-mortem testing was positive. Complete autopsies were performed according to a COVID-19 safety protocol, and all patients underwent both macroscopic and microscopic examination. If available, laboratory findings and echocardiograms were reported. RESULTS: The median age of the decedents was 63.5 years. The most common comorbidities included hypertension (90.0%), diabetes (56.0%) and obesity (50.0%). Lymphocytic inflammatory infiltrates in the heart were present in eight (16.0%) patients, with focal myocarditis present in two (4.0%) patients. Acute myocardial ischemia was observed in eight (16.0%) patients. The most common findings were myocardial fibrosis (80.0%), hypertrophy (72.0%), and microthrombi (66.0%). The most common causes of death were COVID-19 pneumonia in 18 (36.0%), COVID-19 pneumonia with bacterial superinfection in 12 (24.0%), and COVID-19 pneumonia with pulmonary embolism in 10 (20.0%) patients. CONCLUSIONS: Cardiovascular comorbidities were prevalent, and pathologic changes associated with hypertensive and atherosclerotic cardiovascular disease were the most common findings. Despite markedly elevated inflammatory markers and cardiac enzymes, few patients exhibited inflammatory infiltrates or necrosis within cardiac myocytes. A unifying pathophysiologic mechanism behind myocardial injury in COVID-19 remains elusive, and additional autopsy studies are needed.


Assuntos
COVID-19/patologia , Cardiopatias/patologia , Miocárdio/patologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/mortalidade , Aterosclerose/patologia , Autopsia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Comorbidade , Feminino , Cardiopatias/imunologia , Cardiopatias/mortalidade , Cardiopatias/virologia , Interações Hospedeiro-Patógeno , Humanos , Hipertensão/mortalidade , Hipertensão/patologia , Mediadores da Inflamação/análise , Masculino , Pessoa de Meia-Idade , Miocárdio/imunologia , Necrose , SARS-CoV-2/imunologia , Regulação para Cima
12.
Front Immunol ; 12: 584538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679735

RESUMO

The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4+ T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4+ T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4+ T cell compartment was primarily composed of naïve cells defined as CCR7+CD45RO-. However, when transplanted into young lymphocyte-deficient mice, CD4+ T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7- CD45RO+) and terminally-differentiated phenotypes (CCR7-CD45RO-), as typically seen in elderly. Differentiated CD4+ T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4+ T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4+ T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Cardiopatias/imunologia , Memória Imunológica/imunologia , Miocárdio/imunologia , Envelhecimento/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Expressão Gênica/imunologia , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Cadeias HLA-DRB1/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Memória Imunológica/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , RNA-Seq/métodos , Transplante Heterólogo
13.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
14.
Am J Med Sci ; 361(6): 718-724, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33582156

RESUMO

BACKGROUND: Inflammation can facilitate development of coronavirus disease 2019 (COVID-19) and cardiac injury is associated with worse clinical outcomes. However, data are relatively scarce on the association between hyper-inflammatory response and cardiac injury among COVID-19 patients. METHODS: The study was designed based on severe and critically ill patients with COVID-19. Information on clinical characteristics and laboratory examinations was collected from the electronic medical records and analyzed. RESULTS: There were 32.4% (n = 107) of patients with cardiac injury. The median age was 67 years, and 48.8% (n = 161) of patients were men. Hypertension was the most common in 161 (48.8%) patients, followed by diabetes (16.7%, n = 55) and coronary heart disease (13.3%, n = 44). Compared to cases without cardiac injury, those with cardiac injury were older, had higher proportions of coronary heart disease, and leukocyte counts, significantly elevated concentrations of N-terminal pro-B-Type natriuretic peptide, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor (TNF)-α, interleukin-2 receptor (IL-2R), IL-6, and IL-8, but lower lymphocyte counts. A significant positive correlation was observed between high-sensitivity troponin I and inflammatory cytokines. Logistic regression analysis showed that hs-CRP, TNF-α and IL-6 were independent risk factors for cardiac injury. CONCLUSIONS: Cardiac injury was associated with elevated levels of inflammatory cytokines among severe and critically ill patients with COVID-19, suggesting that hyper-inflammatory response may involve in cardiac injury.


Assuntos
COVID-19 , Cardiopatias , SARS-CoV-2 , Troponina I/sangue , Idoso , Proteína C-Reativa/análise , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/terapia , Fatores de Risco Cardiometabólico , China/epidemiologia , Estado Terminal/epidemiologia , Estado Terminal/terapia , Diabetes Mellitus/epidemiologia , Feminino , Cardiopatias/diagnóstico , Cardiopatias/imunologia , Cardiopatias/virologia , Humanos , Hipertensão/epidemiologia , Interleucina-6/sangue , Masculino , Medição de Risco , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/sangue , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/virologia , Fator de Necrose Tumoral alfa/sangue
15.
Immunobiology ; 226(2): 152071, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33588306

RESUMO

Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as ß-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.


Assuntos
Lectinas Tipo C/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Animais , Doenças Autoimunes/imunologia , Autofagia , Cardiopatias/imunologia , Humanos , Infecções/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/genética , Neoplasias/imunologia , Doenças do Sistema Nervoso/imunologia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Doenças Respiratórias/imunologia
16.
J Cell Physiol ; 236(6): 4625-4639, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33452697

RESUMO

Sepsis-induced myocardial dysfunction (SIMD), a deadly symptom in sepsis patients, is mainly caused by cardiovascular inflammation. However, it remains unclear how systemic inflammation triggers and aggravates cardiovascular inflammation in the pathogenesis of SIMD. This study found that proinflammatory cytokines and H2 O2 concentrations were significantly induced in SIMD-mice. In particular, a microarray analysis of CD63+ exosomes isolated from sham- and SIMD-monocytes revealed a significant induction of thioredoxin-interacting protein (TXNIP) and NLR family pyrin domain-containing 3 (NLRP3). We proved that oxidative stress caused the disassociation of the TXNIP-TRX2 (thioredoxin 2) complex and the assembly of the TXNIP-NLRP3 complex. In addition, this finding showed that the latter complex could be embedded into CD63+ exosomes and traffic from monocytes to the resident heart macrophages, where it activated caspase-1 and cleaved inactive interleukin 1ß (IL-1ß) and IL-18. Furthermore, using an amplified luminescent proximity homogeneous assay (Alpha) with GST-TXNIP and His-NLRP3, we obtained a small molecule named PSSM1443 that could disrupt the TXNIP-NLRP3 interaction in vitro, impairing NLRP3 downstream events. Of note, after administering PSSM1443 to the SIMD-mice, we found the small molecule could significantly suppress the activation of caspase-1 and the cleavage of pro-IL-1ß and pro-IL-18, reducing inflammation in the SIMD-mice. Collectively, our results reveal that monocyte-derived exosomes harbor the overexpressed TXNIP-NLRP3 complex, which traffics from circulating monocytes to local macrophages and promotes the cleavage of inactive IL-1ß and IL-18 in the macrophages, aggravating cardiovascular inflammation. PSSM1443 functions as an inhibitor of the TXNIP-NLRP3 complex and its administration can decrease inflammation in SIMD-mice.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas de Transporte/metabolismo , Exossomos/efeitos dos fármacos , Cardiopatias/prevenção & controle , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/tratamento farmacológico , Tiorredoxinas/metabolismo , Animais , Proteínas de Transporte/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Exossomos/genética , Exossomos/imunologia , Exossomos/metabolismo , Cardiopatias/etiologia , Cardiopatias/imunologia , Cardiopatias/metabolismo , Inflamassomos/genética , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estresse Oxidativo , Células RAW 264.7 , Sepse/complicações , Sepse/imunologia , Sepse/metabolismo , Tetraspanina 30/metabolismo , Tiorredoxinas/genética
17.
J Intern Med ; 289(4): 523-531, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976665

RESUMO

BACKGROUND: A high proportion of COVID-19 patients have cardiac involvement, even those without known cardiac disease. Downregulation of angiotensin converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 and the renin-angiotensin system, as well as inflammatory mechanisms have been suggested to play a role. ACE2 is abundant in the gut and associated with gut microbiota composition. We hypothesized that gut leakage of microbial products, and subsequent inflammasome activation could contribute to cardiac involvement in COVID-19 patients. METHODS: Plasma levels of a gut leakage marker (LPS-binding protein, LBP), a marker of enterocyte damage (intestinal fatty acid binding protein, IFABP), a gut homing marker (CCL25, ligand for chemokine receptor CCR9) and markers of inflammasome activation (IL-1ß, IL-18 and their regulatory proteins) were measured at three time points (day 1, 3-5 and 7-10) in 39 hospitalized COVID-19 patients and related to cardiac involvement. RESULTS: Compared to controls, COVID-19 patients had elevated plasma levels of LBP and CCL25 but not IFABP, suggesting impaired gut barrier function and accentuated gut homing of T cells without excessive enterocyte damage. Levels of LBP were twice as high at baseline in patients with elevated cardiac markers compared with those without and remained elevated during hospitalization. Also, markers of inflammasome activation were moderately elevated in patients with cardiac involvement. LBP was associated with higher NT-pro-BNP levels, whereas IL-18, IL-18BP and IL-1Ra were associated with higher troponin levels. CONCLUSION: Patients with cardiac involvement had elevated markers of gut leakage and inflammasome activation, suggestive of a potential gut-heart axis in COVID-19.


Assuntos
COVID-19 , Quimiocinas CC/metabolismo , Microbioma Gastrointestinal/imunologia , Cardiopatias , Inflamassomos/metabolismo , Mucosa Intestinal , SARS-CoV-2 , Proteínas de Fase Aguda/metabolismo , COVID-19/complicações , COVID-19/imunologia , Proteínas de Transporte/metabolismo , Correlação de Dados , Cardiopatias/imunologia , Cardiopatias/virologia , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Glicoproteínas de Membrana/metabolismo , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Troponina/sangue
18.
Front Immunol ; 12: 765140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069538

RESUMO

Anti-melanoma differentiation-associated gene 5 (MDA5) antibody, a dermatomyositis (DM)-specific antibody, is strongly associated with interstitial lung disease (ILD). Patients with idiopathic inflammatory myopathy (IIM) who are anti-MDA5 antibody positive [anti-MDA5 (+)] often experience chest symptoms during the active disease phase. These symptoms are primarily explained by respiratory failure; nevertheless, cardiac involvement can also be symptomatic. Thus, the aim of this study was to investigate cardiac involvement in anti-MDA5 (+) DM. A total of 63 patients with IIM who underwent electrocardiography (ECG) and ultrasound cardiography (UCG) during the active disease phase from 2016 to 2021 [anti-MDA5 (+) group, n = 21; anti-MDA5-negative (-) group, n = 42] were enrolled in the study, and their clinical charts were retrospectively reviewed. The ECG and UCG findings were compared between the anti-MDA5 (+) and anti-MDA5 (-) groups. All anti-MDA5 (+) patients had DM with ILD. The anti-MDA5 (+) group showed more frequent skin ulcerations and lower levels of leukocytes, muscle enzymes, and electrolytes (Na, K, Cl, and Ca) than the anti-MDA5 (-) group. According to the ECG findings obtained during the active disease phase, the T wave amplitudes were significantly lower for the anti-MDA5 (+) group than for the anti-MDA5 (-) group (I, II, and V4-6 lead; p < 0.01; aVF and V3, p < 0.05). However, the lower amplitudes were restored during the remission phase. Except for the E wave, A wave and Sep e', the UCG results showed no significant differences between the groups. Four patients with anti-MDA5 (+) DM had many leads with lower T wave and cardiac abnormalities (heart failure, diastolic dysfunction, myocarditis) on and after admission. Though anti-MDA5 (+) patients clinically improved after immunosuppressive therapy, some of their ECG findings did not fully recover in remission phase. In conclusion, anti-MDA5 (+) DM appears to show cardiac involvement (electrical activity and function) during the active phase. Further studies are necessary to clarify the actual cardiac condition and mechanism of these findings in patients with anti-MDA5 (+) DM.


Assuntos
Autoanticorpos/imunologia , Dermatomiosite , Eletrocardiografia , Cardiopatias , Terapia de Imunossupressão/efeitos adversos , Helicase IFIH1 Induzida por Interferon/imunologia , Adulto , Idoso , Dermatomiosite/imunologia , Dermatomiosite/fisiopatologia , Dermatomiosite/terapia , Feminino , Cardiopatias/etiologia , Cardiopatias/imunologia , Cardiopatias/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade
19.
Int J Cardiol ; 326: 237-242, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098952

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic. The ability to predict cardiac injury and analyze lymphocyte immunity and inflammation of cardiac damage in patients with COVID-19 is limited. We aimed to determine the risk factors and predictive markers of cardiac injury in these patients. METHODS: Data from 124 consecutive hospitalized patients with confirmed COVID-19 were collected. We compared the proportion of cardiovascular disease history in moderate, severe, and critical cases. We obtained high-sensitivity cardiac troponin I (hs-cTn I) results from 68 patients. Patients were divided into two groups based on positive hs-cTn I result: those with cardiac injury (n = 19) and those without cardiac injury (n = 49). RESULTS: Compared with the group with moderate disease, hypertension, coronary heart disease, and smoking were more common in severe and critical cases. Diabetes mellitus was most common in the critical group. Age older than 65 years, presence of chronic kidney disease, and lower blood lymphocyte percentage were independent risk factors of cardiac injury. The total T- and B-lymphocyte counts and CD4+ and CD8+ T-cell counts were significantly lower in those with cardiac injury. A minimal lymphocyte percentage < 7.8% may predict cardiac injury. The interleukin (IL) 6 level in plasma was elevated in the group with cardiac injury. CONCLUSIONS: The lymphocyte percentage in blood may become a predictive marker of cardiac injury in COVID-19 patients. The total T and B cells and CD4+ and CD8+ cell counts decreased and the IL-6 level increased in COVID-19 patients with cardiac injury.


Assuntos
COVID-19/sangue , Cardiopatias/sangue , Hospitalização/tendências , Imunidade Celular/fisiologia , Mediadores da Inflamação/sangue , Linfócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/epidemiologia , COVID-19/imunologia , China/epidemiologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/imunologia , Feminino , Cardiopatias/epidemiologia , Cardiopatias/imunologia , Humanos , Mediadores da Inflamação/imunologia , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/imunologia , Estudos Retrospectivos
20.
Arch Toxicol ; 95(1): 1-9, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852568

RESUMO

Doxorubicin (DOX) is a powerful broad-spectrum anti-neoplastic anthracycline antibiotic. However, DOX may cause a dose-dependent cardiotoxicity that can eventually progress to congestive heart failure and death. Numerous molecular mechanisms have been implicated in the cardiotoxic effect of DOX including topoisomerase IIß and generation of free radicals. However, targeting these pathways appears to be insufficient to mitigate the cardiotoxic effects of DOX and/or ultimately reduces the anti-tumor activity of DOX. Thus, there remains a crucial need to identify novel pharmacological targets that can alleviate the cardiotoxic effects of DOX without reducing its anti-tumor activity. Recent studies have suggested that the Nucleotide-Binding Domain-Like Receptor Protein 3 (NLRP3) inflammasome is implicated in tumor progression and the chemoresistance of cancer cells to DOX. Of interest, reducing NLRP3 inflammasome activity alleviates DOX-induced cardiotoxicity. Therefore, we postulate that strategies that target the NLRP3 inflammasome can help mitigate the cardiotoxic effects of DOX while maintaining and/or even enhancing its anti-cancer activity. Herein, we review the current knowledge about the potential implication of the NLRP3 inflammasome in the anti-cancer and cardiotoxic effects of DOX.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Cardiopatias/prevenção & controle , Inflamassomos/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Cardiotoxicidade , Resistencia a Medicamentos Antineoplásicos , Cardiopatias/induzido quimicamente , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Terapia de Alvo Molecular , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...